Construction of MoS2/graphite/C3N4 Ternary Photocatalytic System Through Communicating Electron

Author:

Ting Cheng Ting Cheng,Chen Chen Chen Chen,Lei Wang Lei Wang,Weifang Xie Weifang Xie,Dianyi Wu Dianyi Wu,Xiao Zhang Xiao Zhang,Zhiyi Zhou and Xiaoqin Zhang Zhiyi Zhou and Xiaoqin Zhang

Abstract

A MoS2/graphite/C3N4 ternary photocatalytic material (MGC catalyst) was successfully synthesized, characterized, and applied to the photodegradation of Methylene Blue (MB). In addition, the photocatalytic mechanism of MGC was illustrated through modern characterization technology and density functional theory (DFT) computation. The findings of characterization (XRD, SEM-EDX, UV-Vis, XPS) confirmed that MGC was a composite photocatalyst of C3N4-graphite-MoS2 ternary structure, and displayed excellent visible light absorption performance. MGC photocatalyst exhibited the highest degradation efficiencies of MB than that of C3N4 and MoS2 catalyst, and it effectively improved the removal of pollutant. Also, the first-order reaction model suitably described the photocatalytic reaction process. The recycling experiments proved that MGC catalyst possessed remarkable photocatalytic stability in the degradation activities of MB, and the morphology maintained stable after three times of reusing. The ternary composite structure of MGC was conducive to the generation and transfer of the photo-generated electrons and photo-generated holes. Besides, MGC photocatalyst obtained the lowest photoluminescence spectrum intensity, which might decrease the combination probability of photo-induced electrons and holes. Electron spin resonance (ESR) analysis verified that the active radicals of •OH and •O2- measured in photocatalytic reaction probably played an essential part in the degradation of MB. Furthermore, through calculating the band structure, density of states (DOS), and work function, it was illustrated that the two opposite potential barriers forming between graphite, MoS2 and C3N interface effectively accelerated the division of photo-induced electrons and photo-induced holes in MoS2 and C3N4. Then, the recombination probability of photo-induced electrons and holes was reduced, and hence that greatly improved the photocatalytic efficiency of MB.

Publisher

Chemical Society of Pakistan

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3