RBM5 suppresses proliferation, metastasis and glycolysis of colorectal cancer cells via stabilizing phosphatase and tensin homolog mRNA

Author:

Wang Chu-Xiang,Liu Feng,Wang Yi

Abstract

BACKGROUND RNA binding motif 5 (RBM5) has emerged as crucial regulators in many cancers. AIM To explore more functional and mechanistic exploration of RBM5 since the lack of research on RBM5 in colorectal cancer (CRC) dictates that is essential. METHODS Through Gene Expression Profiling Interactive Analysis, we analyzed RBM5 expression in colon adenocarcinoma and rectum adenocarcinoma tissues. For detecting the mRNA expression of RBM5, quantitative real time-polymerase chain reaction was performed. Protein expression levels of RBM5, hexokinase 2, lactate dehydrogenase A, phosphatase and tensin homolog (PTEN), phosphoinositide 3-kinase (PI3K), phosphorylated-protein kinase B (p-AKT), and AKT were determined via Western blot. Functionally, cell counting kit-8 and 5-ethynyl-2’-deoxyuridine (EDU) assay were performed to evaluate proliferation of CRC cells. Invasiveness and migration of CRC cells were evaluated through conducting transwell assays. Glucose consumption, lactate production and adenosine-triphosphate (ATP) production were measured through a glucose assay kit, a lactate assay kit and an ATP production assay kit, respectively. Besides, RNA immunoprecipitation assay, half-life RT-PCR and dual-luciferase reporter assay were applied to detect interaction between RBM5 and PTEN. To establish a xenotypic tumor mice, CRC cells were subcutaneously injected into the right flank of each mouse. Protein expression of RBM5, Ki67, and PTEN in tumor tissues was examined using immunohistochemistry staining. Haematoxylin and eosin staining was used to evaluate tumor liver metastasis in mice. RESULTS We discovered down-regulation of RBM5 expression in CRC tissues and cells. RBM5 overexpression repressed proliferation, migration and invasion of CRC cells. Meantime, RBM5 impaired glycolysis in CRC cells, presenting as decreased glucose consumption, decreased lactate production and decreased ATP production. Besides, RBM5 bound to PTEN mRNA to stabilize its expression. PTEN expression was positively regulated by RBM5 in CRC cells. The protein levels of PI3K and p-AKT were significantly decreased after RBM5 overexpression. The suppressive influences of RBM5 on glycolysis, proliferation and metastasis of CRC cells were partially counteracted by PTEN knockdown. RBM5 suppressed tumor growth and liver metastasis in vivo . CONCLUSION This investigation provided new evidence that RBM5 was involved in CRC by binding to PTEN, expanding the importance of RBM5 in the treatment of CRC.

Publisher

Baishideng Publishing Group Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3