Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique

Author:

Hu Wen-Jing,Bai Gang,Wang Yan,Hong Dong-Mei,Jiang Jin-Hua,Li Jia-Xun,Hua Yin,Wang Xin-Yu,Chen Ying

Abstract

BACKGROUND Postoperative delirium, particularly prevalent in elderly patients after abdominal cancer surgery, presents significant challenges in clinical management. AIM To develop a synthetic minority oversampling technique (SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients. METHODS In this retrospective cohort study, we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022. The incidence of postoperative delirium was recorded for 7 d post-surgery. Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not. A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium. The SMOTE technique was applied to enhance the model by oversampling the delirium cases. The model’s predictive accuracy was then validated. RESULTS In our study involving 611 elderly patients with abdominal malignant tumors, multivariate logistic regression analysis identified significant risk factors for postoperative delirium. These included the Charlson comorbidity index, American Society of Anesthesiologists classification, history of cerebrovascular disease, surgical duration, perioperative blood transfusion, and postoperative pain score. The incidence rate of postoperative delirium in our study was 22.91%. The original predictive model (P1) exhibited an area under the receiver operating characteristic curve of 0.862. In comparison, the SMOTE-based logistic early warning model (P2), which utilized the SMOTE oversampling algorithm, showed a slightly lower but comparable area under the curve of 0.856, suggesting no significant difference in performance between the two predictive approaches. CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods, effectively addressing data imbalance.

Publisher

Baishideng Publishing Group Inc.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Postoperative delirium: A tragedy for elderly cancer patients;World Journal of Gastrointestinal Oncology;2024-09-15

2. Predictive modeling for post operative delirium in elderly;World Journal of Gastrointestinal Oncology;2024-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3