Design of low crosstalk homogeneous multicore few mode fiber for future high-capacity optical transmission

Author:

Shams S.M. WaquarORCID,Jakaria Md.ORCID,Mahmud Sher Md. SohelORCID,Naznin ShakilaORCID,Alom S.M. SaifulORCID

Abstract

Many researches are diligently striving to develop a multi-core optical fiber with minimal signal distortion and reduced issues. The current study proposed few designs for homogeneous multicore few mode fiber which is characterized by the combination of high index ring and trench. This study also added four air holes surrounding each core. We considered pure silica for both the outer clad and the inner clad of the fiber. To calculate the crosstalk, a two-core model was used and the mode coupling coefficient was determined using coupled-mode and couple-power theory. For the current work we considered only the fundamental mode (LP01) to compute the crosstalk between neighboring cores. The proposed structure was simulated using the wave optics module of COMSOL Multiphysics (Version 6.1), a well-known commercial software tool based on finite element method (FEM). MATLAB (Version R2018a) was used to calculate the mode coupling coefficient and crosstalk after extracting the mode field data from COMSOL. Obtained results revealed that the proposed structure can offer lower crosstalk which was attractive for future high-capacity fiber optic communication using multicore fiber technology.

Publisher

Genesis Publishing Consortium Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3