Abstract
Nadi-based disease diagnosis is a traditional art in Ayurvedic medicine that is an inquisitive yet not widely comprehended subject. A collection of higher dimensional features from a preprocessed Nadi dataset was extracted and analyzed to diagnose diabetes. The t-distributed Stochastic Neighbor Embedding was used to visualize the higher dimensional feature space in 2-D. The linear dimensionality reduction method of Principal Component Analysis and several linear and nonlinear classifiers were tested on the reduced feature space in identifying diabetes. The key outcomes of this paper are the ability to reduce the feature space by 73.33% while retaining a classification accuracy of 95.4%, identifying age as a compounding factor in diagnosis, and extracting the diabetes-sensitive features with eigenvalue loading.
Publisher
Syncsci Publishing Pte., Ltd.
Subject
Ocean Engineering,Safety, Risk, Reliability and Quality