Diagnostic Classifiers for Explaining a Neural Model with Hierarchical Attention for Aspect-based Sentiment Classification

Author:

Geed Kunal,Frasincar Flavius,Trusca Maria Mihaela

Abstract

The current models proposed for aspect-based sentiment classification (ABSC) are mainly developed with the purpose of providing high rates of accuracy, regardless of the inner working which is usually difficult to understand. Considering the state-of-art model LCR-Rot-hop++ for ABSC, we use diagnostic classifiers to gain insights into the encoded information of each layer. Starting from a set of various hypotheses, we test how sentiment-related information is captured by different layers of the model. Given the model architecture, information about the related words to the target is easily extracted. Also, the model is able to detect to some extent information about the sentiments of the words and, in particular, sentiments of the words related to the target. However, the model is less effective in extracting the aspect mentions associated with a word and the general structure of the sentence.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3