Joint Representation of Entities and Relations via Graph Attention Networks for Explainable Recommendations

Author:

Boughareb Rima,Seridi-Bouchelaghem Hassina,Beldjoudi Samia

Abstract

The latest advances in Graph Neural Networks (GNNs), have provided important new ideas for solving the Knowledge Graph (KG) representation problem for recommendation purposes. Although GNNs have an effective graph representation capability, the nonlinear transformations over the layers cause a loss of semantic information and make the generated embeddings hard to explain. In this paper, we investigate the potential of large KGs to perform interpretable recommendation using Graph Attention Networks (GATs). Our goal is to fully exploit the semantic information and preserve inherent knowledge ported in relations by jointly learning low-dimensional embeddings for nodes (i.e., entities) and edges (i.e., properties). Specifically, we feed the original data with additional knowledge from the Linked Open Data (LOD) cloud, and apply GATs to generate a vector representation for each node on the graph. Experiments conducted on three real-world datasets for the top-K recommendation task demonstrate the state-of-the-art performance of the system proposed. In addition to improving predictive performance in terms of precision, recall, and diversity, our approach fully exploits the rich structured information provided by KGs to offer explanation for recommendations.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3