Post-earthquake Dynamics of Bridge Structures using New Particle Dampers – A Case Study of the Nujiang River Bridge

Author:

Lei Gong,Miao Tang

Abstract

In this study, a new mechanical model, named particle damping mechanics model (PU_SPD), is proposed to study the damping problem of bridge structures. The model takes the Nujiang River Bridge as a case study, and explores the mechanism of force action by analyzing the time domain vibration characteristics and frequency domain of the excitation force, vibrating body (bridge structural properties) and particle damping. the PU_SPD model and its calculation method can intuitively and scientifically describe the damping dissipation characteristics of a vibrating beam under the action of particle damping, avoiding the tedious process of parameter iterative solution and improving the computational efficiency. In addition, the damping influence law of particle damping on the beam structure is derived through the analysis of transfer function and damping level. The study also proposes an optimal design method for PU_SPD damping parameters under dynamic loading of the bridge, and its performance parameters are analyzed and verified, and compared and validated with the time-domain analysis method. The results show that the PU_SPD mechanical model based on time-frequency domain analysis can intuitively reflect the damping dissipation mechanics with high accuracy, clear solution process and reasonable and accurate parameter optimization analysis method. PU_SPD has a wide frequency range, good effect and stability, and has a good prospect of application in engineering vibration and noise reduction.

Publisher

River Publishers

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3