Author:
Kiani Y,Bagheri H.,Eslami M. R.
Abstract
In the present research, buckling behaviour of an isotropic homogeneous rotating annular plate subjected to uniform compression on both inner and outer edges is analysed. It is further assumed that the plate is rotatingwith a constant angular speed. Formulation is based on the first order shear deformation plate theory, which is valid for thin and moderately thick plates. The complete set of equilibrium quations and the associated boundary conditions are obtained for the plate. Prebuckling loads of the plate are obtained under flatness and axisymmetric deformations. Using the adjacent equilibrium riterion, the linearised stability equations are extracted. An asymmetric stability analysis is performed to obtain the critical buckling loads of the plate and the buckled configurations of the rotating plate. To this end, trigonometric functions through the circumferential direction and the generalised differential quadrature discretization across the radial direction are used which result in an algebraic eigenvalue problem. Benchmark results are given in graphical presentations for combinations of free, simply-supported, sliding supported, and clamped types of boundary conditions. It is shown that rotation enhances the buckling loads of the plate for all types of boundary conditions and alters the buckled shape of the plate.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献