Precision in practice: exploring the impact of ai and machine learning on ultrasound guided regional anaesthesia

Author:

Bhatti Noor Ul Huda,Syed Ghazi Ali Kirmani ,Maryam Butt

Abstract

Ultrasound Guided Regional Anaesthesia (UGRA) is a commonly utilized practice in both elective and emergency situations during surgical procedures and for pain management. Its benefits include, being non-invasive, cost-effective, readily accessible, and providing the anaesthetist with clear visualization of essential anatomical landmarks, needle progression, and the spread of local anaesthetic. Ultrasonography has been shown to increase success rates for regional anaesthesia and decrease complications. One of the critical steps during UGRA is identifying relevant anatomical structures like nerves or vertebras. However, this aspect can be hindered by external influences such as variations in nerve structure and position, interference from noise, and positional instability. Machine learning is a promising branch of artificial intelligence. It is used to conduct predictive tasks without programming instructions by creating algorithms. Extensive research has been conducted to evaluate the influence of machine learning on innovative anaesthesia methods. In 2023, Lopez et al. published a systematic review on how Artificial Intelligence could positively impact traditional anaesthesia practices.1 Various studies included in the review employed different models to achieve variable targets during the induction of anaesthesia. In one experiment, Alkhatib et al. used Convolutional neural network (CNN) based deep trackers to track the median and sciatic nerve with a surprising accuracy of 0.87.2 Another study employed the same CNN model to locate and discriminate accurate images of sacrum, vertebral levels and intervertebral gaps during percutaneous spinal needle insertion.3 Another study used a different AI model called SVM (support vector machine) classification, image processing, and template matching to locate lumbar level L3-L4 and the ideal puncture site for epidural anaesthesia in real-time. In this experiment, anaesthetists with minimal experience in ultrasonography were able to successfully determine needle puncture sites accurately.4 All these studies utilizing AI models not only yielded beneficial results but also led to significant time savings. Considering this, anaesthesiologists nationwide must integrate effective AI models to improve their clinical practice. This would minimize adverse outcomes in regional anaesthesia and ultimately enhance patient care and satisfaction.

Publisher

Pakistan Medical Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3