Evaluation of changes in the locomotion and histology of sciatic nerve following experimental autoimmune encephalomyelitis

Author:

Chang S.1,Wai S.1,Chin P.1,Lim J.1,Mitra N.2

Affiliation:

1. Department of Anatomy, School of Medicine, Taylor's University, Subang Jaya 47500, Selangor, Malaysia

2. Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia

Abstract

Abstract Introduction: Involvement of peripheral nerves in the experimental model of multiple sclerosis (MS) is rarely observed. The objective of this study was to investigate the changes in the locomotion in a mouse model of experimental autoimmune encephalomyelitis (EAE) and correlate with histological changes, if any, in the sections of sciatic nerve and lumbar part of spinal cord. Material and Methods: C57BL/6 mice (10 weeks, n = 8) were immunized with single subcutaneous injection of 300 μg of MOG35-55 and 200 μL of complete Freund's adjuvant (CFA) to produce EAE models. Limp tail with weakness of hindlimb was observed on day 10 and improvement in the weakness was observed on day 20 onwards. Footprint analysis was done to evaluate the impairment in the locomotion on day 0, 5, 10, 15 and 20 of the experiment. Results: One way repeated measure ANOVA found significant reduction in the mean hindlimb stride length on day 10 and 15 (left) and on day 15 and day 20 (right) when compared to mean stride length in day 0 (p<0.05). Histological analysis showed evidence of macrophage infiltration around the dilated blood vessels in the epineurium of sciatic nerve and evidence of damage in the myelinated white matter of lateral funiculus of the lumbar sections of the spinal cord in EAE mice. Conclusion: It is concluded that in mouse model of EAE, the impairment oflocomotion due to damage in the lumbar part of spinal cord can be associated with inflammatory changes in the sciatic nerve.

Publisher

The Brazilian Society of Anatomy (SBA)

Subject

Cell Biology,Histology,Anatomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3