Exercise intensities modulate ACE2/MasR/eNOS pathway in male Wistar rat's lung

Author:

Lestari Yani Medina1,Tarawan Vita Murniati2ORCID,Achadiyani Achadiyani2ORCID,Radhiyanti Putri Teesa2ORCID,Ray Hamidie Ronald Daniel3ORCID,Lesmana Ronny24ORCID,Goenawan Hanna24ORCID

Affiliation:

1. Biomedical Science Master Program, Faculty of Medicine Universitas Padjadjaran Bandung Indonesia

2. Department of Biomedical Science, Faculty of Medicine Universitas Padjadjaran Jatinangor Indonesia

3. Faculty of Sport and Health Education Universitas Pendidikan Indonesia Bandung Indonesia

4. Central Laboratory Universitas Padjadjaran Jatinangor Indonesia

Abstract

AbstractSpecific exercise intensities could improve lung vascular function by increasing nitric oxide (NO). The ACE2/MasR/eNOS axis is one of the pathways facilitating NO synthesis. This study examines the effect of different intensities of aerobic training on the ACE2/MasR/eNOS axis and histology of lung muscular arteries. Male Wistar rats were used in this study and randomized into control and exercise groups receiving low‐, moderate‐, and high‐intensity training. The training was conducted for 30 min daily, five times a week, for 8 weeks. We observed that different exercise intensities affect the ACE2/MasR/eNOS pathway differently. Compared to control, high‐intensity aerobic exercise significantly increased ACE2, Mas receptor (MasR), and eNOS mRNA expressions (p < 0.01). Moderate‐intensity exercise significantly increased MasR and eNOS mRNA expressions compared to the control (p < 0.05), and this intensity also increased ACE2 mRNA but not significantly. Low‐intensity exercise increased ACE2, MasR, and eNOS mRNA expressions but not significantly. Low‐, moderate‐, or high‐intensity exercises reduced the medial wall thickness of the lung muscular arteries but not significantly. In conclusion, high‐intensity exercise may induce NO synthesis in the lung by increasing mRNA expression of ACE2, MasR, and eNOS without decreasing the medial wall thickness of the muscular artery. Thus, high‐intensity exercise may be the optimal intensity to improve NO synthesis and vascular function in the lung.

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3