Knockdown of the TRPM4 channel alters cardiac electrophysiology and hemodynamics in a sex‐ and age‐dependent manner in mice

Author:

Arullampalam Prakash1,Essers Maria C.1,Boukenna Mey1,Guichard Sabrina1,Rougier Jean‐Sébastien1ORCID,Abriel Hugues1

Affiliation:

1. Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern Bern Switzerland

Abstract

AbstractTRPM4 is a calcium‐activated, voltage‐modulated, nonselective ion channel widely expressed in various cells and tissues. TRPM4 regulates the influx of sodium ions, thus playing a role in regulating the membrane potential. In the heart, TRPM4 is expressed in both cardiomyocytes and cells of the conductive pathways. Clinical studies have linked TRPM4 mutations to several cardiac disorders. While data from experimental studies have demonstrated TRPM4's functional significance in cardiac physiology, its exact roles in the heart have remained unclear. In this study, we investigated the role of TRPM4 in cardiac physiology in a newly generated Trpm4 knockdown mouse model. Male and female Trpm4 knockdown (Trpm4−/−) and wild‐type mice of different ages (5‐ to 12‐ week‐old (young) and 24‐week‐old or more (adult)) were characterized using a multimodal approach, encompassing surface electrocardiograms (ECG), echocardiography recordings, ex vivo ECGs in isolated heart, endocardial mappings, Western blots, and mRNA quantifications. The assessment of cardiac electrophysiology by surface ECGs revealed no significant differences between wild‐type and Trpm4−/− young (5‐ to 12‐week‐old) mice of either sex. Above 24 weeks of age, adult male Trpm4−/− mice showed reduced heart rate and increased heart rate variability. Echocardiography revealed that only adult male Trpm4−/− mice exhibited slight left ventricular hypertrophic alterations compared to controls, illustrated by alterations of the mitral valve pressure halftime, the mitral valve E/A ratio, the isovolumetric relaxation time, and the mitral valve deceleration. In addition, an assessment of the right ventricular systolic function by scanning the pulmonary valve highlighted an alteration in pulmonary valve peak velocity and pressure in adult male Trpm4−/− mice. Endocardial mapping recordings showed that applying 5 μM of the new TRPM4 inhibitor NBA triggered a third‐degree atrioventricular block on 40% of wild‐type hearts. These results confirm the key role of TRPM4 in the proper structure and electrical function of the heart. It also reveals differences between male and female animals that have never been reported. In addition, the investigation of the effects of NBA on heart function confirms the role of TRPM4 in atrioventricular conduction.

Funder

Stavros Niarchos Foundation

Publisher

Wiley

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3