Ultrasonic imaging as a means of monitoring gonadal development in lumpfish (Cyclopterus lumpus)

Author:

Mlingi Frank Thomas1ORCID,Puvanendran Velmurugu2ORCID,Burgerhout Erik2ORCID,Tveiten Helge3ORCID,Tomkiewicz Jonna4ORCID,Kjørsvik Elin1ORCID,Mommens Maren5ORCID

Affiliation:

1. Department of Biology Norwegian University of Science and Technology (NTNU) Trondheim Norway

2. Department of Production Biology Nofima AS Tromsø Norway

3. Norwegian College of Fisheries Science, UiT The Arctic University of Norway Tromsø Norway

4. Institute of Aquatic Resources, Technical University of Denmark Kongens Lyngby Denmark

5. Department of Breeding and Research and Development AquaGen AS Trondheim Norway

Abstract

AbstractThe commercial farming of juvenile lumpfish requires monitoring of gonadal development to achieve synchronized production. Conventional methods such as gonadosomatic index (GSI), sex hormone analyses, gonadal histology, endoscopy, and gene expression analyses are costly, invasive, and often involve sacrificing the fish. We assessed the efficiency of ultrasound as a non‐invasive method for monitoring gonadal development in lumpfish. Based on ultrasound observations, we categorized the fish into six stages; F0 to F5 for females and M0 to M5 for males, that represented maturity levels from immature to spent. Importantly, the ultrasound gonadal stages aligned with histological gonadal stages. Additionally, ultrasound stages aligned with profiles of GSI, testosterone (T), 11‐ketotestosterone, and 17β‐estradiol throughout gonadal development including the spawning period. Moreover, these parameters exhibited significant positive correlations with each other reflecting their parallel trends during gonadal development. To minimize the frequency of ultrasound usage and fish handling, we established F3 and M3/M4 as arbitrary thresholds for identifying ripe females and males, respectively. By using these thresholds, the need for regular ultrasound monitoring could be reduced during most of the rearing period. Ultrasound proves to be useful and reliable for monitoring gonadal development in lumpfish, enabling synchronized production of juvenile fish.

Publisher

Wiley

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3