Generalized Algorithm for Finding Outliers in a Regression Model

Author:

Kurkina M.V.,Ponomarev I.V.

Abstract

One of the actively developing areas of modern computational problems is data analysis. The studied data have a different structure, which causes certain difficulties in the process of smoothing and analysis. This fact entails the need to search for new universal algorithms for data processing and create computer programs that analyze data of various nature. Today, a widely used method of data processing is regression modeling. It is used in problems of pattern recognition, classification, dimensionality reduction, and many others. The literature describes various methods of constructing regression models, the basis of which is the optimization of a certain indicator — the quality functional. A very important requirement for the quality of such models is the absence of outliers (outliers) in the data. This article discusses a method for examining a sample for outliers. The obtained algorithm can be applied to regression models estimated by the most common methods (least squares method, least modulus method). The mathematical basis of this procedure is the Legendre transformation, which provides computational accuracy in computer implementation. The adequacy of the obtained algorithm was investigated on a number of test samples. All tests were positive in terms of emissions. The MatLab system is used to develop a set of programs, which allows the building of various regression models and evaluation of the original sample for sharply distinguished observations.

Publisher

Altai State University

Subject

General Medicine

Reference10 articles.

1. Стрижов В.В., Крымова Е.А. Методы выбора регрессионных моделей. М., 2010.

2. Мудров В.И., Кушко В.Л. Метод наименьших модулей. М., 1971.

3. Armstrong R.D., Kung D.S. Algorithm AS132: Least absolute value estimates for a simple linear regression problem // Appl. Stat. 1978. Vol. 7.

4. Weisberg S. Applied linear regression. 3rd ed. Jonh Wiley & Sans, Inc., 2005.

5. Мостеллер Ф., Тьюки Дж. Анализ данных и регрессия / пер. с англ. М., 1982. Вып. 1, 2.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3