Ellipsoidal Approximation of the Set of Solutions of Interval Systems of Linear Algebraic Equations

Author:

Ergaliev E.R.,Madiyarov M.N.,Oskorbin N.M.,Smolyakova L.L.

Abstract

The article presents the results of the approximation of the set of solutions of interval systems of linear algebraic equations. These systems are used in the problems of modeling linear deterministic processes. It is assumed that the modeled process is described by an output variable and a set of input variables, the measurement errors of which are assumed to be set by known intervals symmetric with respect to the zero value. Traditionally, the sets of solutions of interval systems of linear algebraic equations in applied problems are approximated by a hyper-rectangular whose sides are parallel to the axes of the selected coordinate system. In this paper, we propose to use an ellipsoidal approximation of these sets, which is more efficient. The main results of the work include the substantiation of assumptions about the properties of the modeled process, the choice of a mathematical method for constructing an approximating ellipsoid, the proposed method for forming boundary points, and a numerical method for solving the problem. A computer simulation of the problem of estimating the parameters of a linear process is performed in Excel, which is used for a comparative study of approximations of solutions of interval systems of linear algebraic equations by a hyper-rectangular and an ellipse.

Publisher

Altai State University

Subject

General Medicine

Reference10 articles.

1. Канторович Л.В. О некоторых новых подходах к вычислительным методам и обработке наблюдений // Сибирский математический журнал. 1962. Т. 3. № 5.

2. Шарый С.П. Конечномерный интервальный анализ. Новосибирск, 2017.

3. Шелудько А.С. Гарантированное оценивание параметров дискретных моделей хаотических процессов // Вестник ЮУрГУ. Серия : Вычислительная математика и информатика. 2018. Т. 7. № 1.

4. Мадияров М. Н., Оскорбин Н.М., Суханов С.И. Примеры интервального анализа данных в задачах моделирования процессов // Известия Алт. гос. ун-та. 2019. № 1 (105).

5. Жолен Л. Прикладной интервальный анализ. М. ; Ижевск, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3