THE ROLE OF BACTERIORHODOPSIN IN LIGHT HARVESTING AND ATP PRODUCTION BY HALOBACTERIUM SALINARUM CELLS

Author:

Drochioiu Gabi1ORCID

Affiliation:

1. Al. I. Cuza University of Iasi, Faculty of Chemistry

Abstract

Halobacterium salinarum is an extremely halophilic marine Gram-negative obligate aerobic archaeon. Despite its name, this is not a bacterium, but rather a member of the domain Archaea, which lives in hypersaline lakes. Bacteriorhodopsin (BRh) is the red retinal-containing protein found in the cell membranes of H. salinarum and is considered a light-activated proton pump that transports protons across the plasma membrane. Bacteriorhodopsin photointermediates have been defined in kinetic and spectroscopic terms as BR568, K590, L550, M412, N560, and O640. We have previously shown, using the Forster cycle for BRh that its acidity increases greatly on illumination. Therefore, protons released upon illumination of the L550 intermediate with 412 nm light may not play an essential role in ATP production. Instead, the light-induced excitation energy, which represents the energy difference between the L550 and M412 states, can be used to extract an ATP molecule attached to ATP synthase. Thus, we have shown that this amount of energy corresponds to a near-infrared vibration, which is sufficient for ATP production and provides the most feasible molecular mechanism for this phenomenon. Here, we provide new evidence that protons are released due to BRh excitation, unrelated to ATP synthesis, being only a secondary phenomenon. In addition, once released from H. salinarum cells, protons should return back into the cells via ATP-synthase molecules to produce ATP. This is not possible at pH > 7.0, such as pH 9.5. However, the stability of M intermediates and ATP formation appear to be increased at higher pH values. Indeed, a spectral shift of 138 nm may be associated with an energy amount of about 17 kcal mol-1, which is enough energy to release a mole of ATP from ATP-synthase. In general, light excitation of fluorescent molecules is a phenomenon that induces a strong increase in their acidity. Recent data suggest that the chemiosmotic hypothesis put forward by Peter Mitchell to explain ATP formation in living cells is not correct, at least in terms of explaining light-induced ATP production in H. salinarum cells.

Publisher

STEF92 Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3