Synthesis of Zinc Oxide Nanoparticles by using Aloe Vera Leaf Extract as Pontential Anode Material in Lithium Ion Battery

Author:

Siti Rabiatul Adawiyah Mazli ,Hanis Mohd Yusoff ,Nurul Hayati Idris

Abstract

Synthesis of nanoparticles by using plant have sparked interest among researchers due to environmentally safe, inexpensive and simple method to compare with chemical method. Use of plant in synthesis zinc oxide nanoparticles (ZnO NPs) that act as reducing and capping agent are more recommended, due to high production of product and rate of synthesis is faster than using microorganism. This study focus on the synthesis of ZnONPs by using leaf extract of aloe vera (Aloe bardenisis miller) with different concentration (30%, 40% and 50%) and various calcination temperature which are 500 ˚C, 700 ˚C and 900 ˚C for 4 hours. Fourier – transform infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM), X-ray Diffraction (XRD) and Brunauer-Emmet and Teller (BET) were used to characterize the prepared samples. FTIR spectra showed present wavenumber in between 400-500 cm-1 indicated the presence of Zn-O stretch. Powder XRD pattern confirmed the hexagonal wurtzite structure with average particles size from 24.19 nm to 67.69 nm for all concentration and temperature by using Scherer’s equation. For SEM analysis the images show irregular shape for concentrations 30% and 50% with size range from 500 nm to 900 nm while for concentration 40% cubic shape was observe with size range from 140 nm to 900 nm. All characterize show that formation of ZnO NPs depend on the concentration and calcination temperature. Sample 30% and 50% ZnO NPs was applied in lithium battery at voltage from 0.01 to 3. 1.2 mAhg-1 was recorded for sample 30% ZnO NPs while 100 mAhg-1.

Publisher

Penerbit UMT, Universiti Malaysia Terengganu

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3