MODELLING INDIAN OCEAN AIR TEMPERATURE USING ADDITIVE MODEL

Author:

MIFTAHUDDIN ,SITANGGANG ANANDA PRATAMA,MOHAMED NORIZAN,A. BAKAR MAHARANI

Abstract

In this study, we used the fluctuating air temperature dataset. The change is caused by data fluctuations, trend, seasonality, cyclicity and irregularities. The generalized additive model (GAM) data approach is used to describe these phenomena. The aim of this research is to find out the factors that affect the air temperature in the Indian Ocean, find a suitable model, and obtain the best model from three approximate methods, namely the Linear Model (LM), the Generalized Linear Model (GLM), and the GAM models, which use a dataset of factors that affect the temperature of the Indian Ocean (close to Aceh region). For the air temperature of α = 0.05, the significant effects are precipitation, relative humidity, sea surface temperature, and the wind speed. The LM, GLM and GAM models are quite feasible because they all meet and pass the classical hypothesis tests, namely the normality test, multicollinearity test, the heteroscedasticity test, and the autocorrelation test. The appropriate model is GAM model based on adaptive smoothers. Compared to the LM, GLM and GAM models, GAM model with the adaptive smoothers base gave smallest AIC values of 4552.890 and 2392.396 where modeling was without and with time variable respectively. Therefore, it can be said that the correct model used at air temperature is the GAM model for adaptive smoothers base.

Publisher

Penerbit UMT, Universiti Malaysia Terengganu

Reference16 articles.

1. I. Ghozali. (2009). Aplikasi Analisis Multivariate dengan Program SPSS. Semarang: UNDIP.

2. I. Komang. (2001). Penerapan gam untuk pendugaan model produksi. Bogor: IPB

3. M. H., Kutner, C. J., Nachtsheim & J. Neter, W. Li. (2005). Applied linear statistical models (5th ed.). New York: Mc Graw-Hill.

4. S. Weisberg. (2014). Applied Linear Regression (4th ed.)., Hoboken, New Jersey: John Wiley & Sons, Inc.

5. T. Z. Keith. (2014). Multiple regression and beyond: An introduction to multiple regression and structural equation modeling (2nd ed.). New York: Routledge.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3