Canonical Validation of a Modeling Strategy for Carbon Monoxide Emissions in Staged Operation of Gas Turbine Combustors

Author:

Klarmann Noah1,Sattelmayer Thomas1

Affiliation:

1. Lehrstuhl für Thermodynamik

Abstract

Canonical validation of a holistic modeling strategy for the prediction of CO emissions in staged operation of gas turbine combustors is subject of this study. Results from various validation cases are presented. Focus is on operating conditions that can be considered typical for modern, flexible gas turbines that meet the requirements of the upcoming new energy age. Reducing load in gas turbines is usually achieved by redistributing fuel referred to as fuel staging. Fuel-staged operation may lead to various mechanism like strong interaction of the flame with secondary air leading to quenching and elevated CO emissions and is - due to technical relevance - stressed in this work. In the recent past, our group published a new modeling strategy for the precise prediction of heat release distributions as well as CO emissions. An extension to the CO modeling strategy that is of high relevance for the introduced validation cases is addressed by this work. The first part of this study presents relevant aspects of the overall modelling strategy. Furthermore, a validation of the models is shown to demonstrate the ability of precisely predicting CO in two different multi-burner cases. Both validation cases feature a silo combustion chamber with 37 burners. The burner groups are switched off at partial load leading to intense interactions between hot and cold burners. Major improvement in comparison to CO predictions from the flamelet-based combustion model can be achieved as the modeling strategy is demonstrated to be capable of predicting global CO emissions accurately. Furthermore, the model’s precision in fuel staging scenarios are demonstrated and discussed.

Publisher

Global Power and Propulsion Society

Reference27 articles.

1. ANSYS Fluent Academic Research, Relase 18.0;ANSYS,2014

2. Energy Outlook;British Petroleum,2018

3. Semiempirical predictions and correlations of CO emissions from utility combustion turbines

4. High-temperature oxidation of CO and CH4

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3