Towards digital design of gas turbines

Author:

Montomoli Francesco12,Antorkas Stelios1,Pietropaoli Marco12,Gaymann Audrey12,Hammond James1,Frey Marioni Yuri13,Isaksson Niklas1,Massini Michela1,Vazquez-Diaz Raul3,Adami Paolo3

Affiliation:

1. UQLab, Dept of Aeronautics, Imperial College of London, South Kensington Campus, London SW7 2AZ, UK

2. TOffeeAM ltd, 4 Winsley Street Mappin House, London W1W 8HF, UK

3. Rolls-Royce plc, Derby, Derbyshire DE24 7XX, UK

Abstract

This paper shows the current research to move towards the full digital design of a gas turbine. In the last years new manufacturing technologies, such as additive manufacturing, become more common for gas turbine applications, allowing greater flexibility in the design space. There is a need to fully exploit this flexibility and to design and validate in a digital environment new solutions. This work shows how optimization methods, mainly based on topology optimization strategies, requires more accurate estimator for critical applications, such as high temperature components of high pressure stages. For this reason a comparison of recent Gene Expression Programming and Neural Networks in topology optimization are shown. In particular it is shown how a RANS estimator in fluid topology optimization is capable of obtaining predictions compatible to high fidelity DES.

Publisher

Global Power and Propulsion Society

Reference21 articles.

1. RANS Turbulence Model Development using clustering and artificial neural networks, Imperial College of London Final Year Project for Meng, supervisor Montomoli F., co-supervisor Frey Y;Alvarez de,2020

2. Optimal shape design as a material distribution problem

3. Generating optimal topologies in structural design using a homogenization method

4. An Investigation on Turbine Tip and Shroud Heat Transfer

5. Machine Learning and Turbulence Modelling 2020, ESA report Imperial College of London, supervisor Montomoli F;Frey Y.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3