Chlorophyll-a Concentration Assessment Using Remotely Sensed Data over Multiple Years along the Coasts of the United Arab Emirates

Author:

Fathelrahman Eihab M.,Hussein Khalid A.,Paramban Safwan,Green Timothy R.,Vandenberg Bruce C.

Abstract

The United Arab Emirates (UAE) recently witnessed algal/phytoplankton blooms attributed to the high concentrations of Chlorophyll-a associated with the spread and accumulation of a wide range of organisms with toxic effects that influence ecological and fishing economic activities and water desalination along coastal areas.  This research explores the UAE coasts as a case study for the framework presented here. In this research, we argue that advances in satellite remote sensing and imaging of spatial and temporal data offer sufficient information to find the best-fit regression method and relationship between Chlorophyll-a concentration and a set of climatic and biological explanatory variables over time. Three functional forms of regression models were tested and analysed to reveal that the Log-Linear Model found to be the best fit providing the most statistically robust model compared to the Linear and the Generalised Least Square models.  Besides, it is useful to identify the factors Sea Surface temperature, Calcite Concentration, Instantaneous Photosynthetically Available Radiation, Normalized Fluorescence Line Height, and Wind Speed that significantly influence Chlorophyll-a concentration. Research results can be beneficial to aid decision-makers in building a best-fit statistical system and models of algal blooms in the study area. The study found results to be sensitive to the study’s temporal time-period length and the explanatory variables selected for the analysis.

Publisher

Faculty of Food and Agriculture, United Arab Emirates University

Subject

Agronomy and Crop Science,Animal Science and Zoology,Applied Microbiology and Biotechnology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3