Study of temperature dependent electroluminescence of InGaN/GaN multiple quantum wells using low temperature scanning near-field optical microscopy

Author:

Xu Geng-Zhao ,Liang Hu ,Bai Yong-Qiang ,Lau Kei-May ,Zhu Xing ,

Abstract

Though GaN based semiconductor materials and devices have achieved giant commerc ial success, there were few reports on their electroluminescent near-field optic al studies at low temperature. In this paper we present our results of the elect roluminescent near-field images and spectra at both room temperature and liquid nitrogen temperature by using a lab-made low temperature scanning near-field opt ical microscope. We found that with the decreasing of sample temperature, the fl uctuation of electroluminescent intensity in the near-field images is reduced gr eatly and the peak photon energy of the spectra emitted from the quantum wells e xhibits a blue-shift at first and then a red-shift. A new spectral peak emerges at higher photon energy at liquid nitrogen temperature. According to our analysi s, this higher photon energy peak is attributed to the transition from the botto m of conduction band to the acceptor energy states in the p-GaN cap layer.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3