Dynamics of localized wave solutions for a higher-order Ablowitz-Ladik equation

Author:

Wen Xiao-Yong,Wang Hao-Tian,

Abstract

It is an important research topic to study diverse local wave interaction phenomena in nonlinear evolution equations, especially for the semi-discrete nonlinear lattice equations, there is little work on their diverse local wave interaction solutions due to the complexity and difficulty of research. In this paper, a semi-discrete higher-order Ablowitz-Ladik equation is investigated via the generalized <inline-formula><tex-math id="M2">\begin{document}$(M, N-M)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M2.png"/></alternatives></inline-formula>-fold Darboux transformation. With the aid of symbolic computation, diverse types of localized wave solutions are obtained starting from constant and plane wave seed background. Particularly, for the case <inline-formula><tex-math id="M3">\begin{document}$M=N$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M3.png"/></alternatives></inline-formula>, the generalized <inline-formula><tex-math id="M4">\begin{document}$(M, N-M)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M4.png"/></alternatives></inline-formula>-fold Darboux transformation may reduce to the <i>N</i>-fold Darboux transformation which can be used to derive multi-soliton solutions from constant seed background and breather solutions from plane wave seed background, respectively. For the case <inline-formula><tex-math id="M5">\begin{document}$M=1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M5.png"/></alternatives></inline-formula>, the generalized <inline-formula><tex-math id="M6">\begin{document}$(M, N-M)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M6.png"/></alternatives></inline-formula>-fold Darboux transformation reduce to the generalized <inline-formula><tex-math id="M7">\begin{document}$(1, N-1)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M7.png"/></alternatives></inline-formula>-fold one which can be used to obtain rogue wave solutions from plane wave seed background. For the case <inline-formula><tex-math id="M8">\begin{document}$M=2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M8.png"/></alternatives></inline-formula>, the generalized <inline-formula><tex-math id="M9">\begin{document}$(M, N-M)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M9.png"/></alternatives></inline-formula>-fold Darboux transformation reduce to the generalized <inline-formula><tex-math id="M10">\begin{document}$(2, N-2)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20191235_M10.png"/></alternatives></inline-formula>-fold one which can be used to give mixed interaction solutions of one-breather and first-order rogue wave from plane wave seed background. To study the propagation characteristics of such localized waves, the numerical simulations are used to explore the dynamical stability of such obtained solutions. Results obtained in the present work may be used to explain related physical phenomena in nonlinear optics and relevant fields.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference31 articles.

1. You F C 2008 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese)
尤福财 2008 博士学位论文 (上海: 上海大学)

2. Toda M 1967 J. Phys. Soc. Jpn. 23 501

3. Li Y S 1999 Soliton and Integrable System (Shanghai: Shanghai Scientific and Technological Education Publishing House) p25 (in Chinese)
李翊神 1999 孤子与可积系统 (上海: 上海科技教育出版社) 第25页

4. Hirota R (translated by Wang H Y, Li C X, Zhao J X, Yu G F) 2004 The Direct Method in Soliton Theory (New York: Cambridge University Press) p59
広田良吾 著 (王红艳, 李春霞, 赵俊霄, 虞国富 译) 2004 孤子理论中的直接方法(北京: 清华大学出版社) 第59页

5. Yue Y F, Huang L L, Chen Y 2018 Comput. Math. Appl. 75 2538

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3