Author:
Jiazila Hasaien ,Zhu Ke-Jia,Sun Fei,Wu Yan-Ling,Shi You-Guo,Zhao Ji-Min, , ,
Abstract
Ultrafast spectroscopy is a powerful method to generate and control topological phase transitions and spin-polarized electrical currents in topological quantum materials. These light-induced novel physical properties originate from the topologically nontrivial states of Dirac and Weyl fermions. The topological semimetal molybdenum phosphide (MoP) exhibits double and triple degenerate points in the momentum space. We present the preliminary results of spin-polarized electrical currents and optical response investigations of MoP. We design and construct an experimental setup to perform the photocurrent generation and control by circularly polarized light in topological insulator Bi<sub>2</sub>Se<sub>3</sub>. The results compare well with those reported, which confirms the validity and reliability of our experimental setup. Further, we conduct the photocurrent experiment on MoP by using 400 nm laser pulses for excitation and successfully detect the current signals at different sample positions. We attribute the observed currents to photo-induced thermal currents (not the photo current associated with the triple degenerate topological properties), which facilitates generating and controlling photocurrents in MoP in the future investigation. Our thermal current investigations are of essence for further exploring the photocurrents in various types of topological quantum materials.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献