Surface charging effect of the satellite SMILE

Author:

Xu Liang-Liang,Cai Ming-Hui,Yang Tao,Han Jian-Wei, ,

Abstract

When the satellite is on orbit, the surrounding plasma environment will interact with the spacecraft surface, accumulate charges on the spacecraft surface and cause surface charging effect, which could lead to electrostatic discharge and affect the running of the spacecraft. SMILE is a satellite operating in a solar synchronous and high inclination large elliptical orbit. The on-orbit motion will encounter ionospheric plasma, magnetospheric plasma and solar wind plasma, pass through the region of the outer radiation belt enriched by high-energy electrons. These environmental factors can cause the surface charging effect on satellite and affect on-orbit security of the satellite and the acquisition of scientific data. Utilizing the software simulation of spacecraft plasma interaction system, the charging effects of SMILE satellite surface in solar wind plasma, magnetic tail plasma and extremely harsh plasma environment have been simulated, and the charging potential distribution on its surface have been obtained. The results show that the surface charging potential varies in different environments, but all comfort with the design requirements. The analysis of surface current shows that the secondary electron emission has great influence on surface charging in various plasma environments. Under sun illumination, photoelectron emission dominates surface charging. By analyzing the charge current on the surface on the eclipse, the calculated results can supply the experimental curve of the secondary electron emission coefficient of indium tin oxide materials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference35 articles.

1. Ferguson D 1993 31st Aerospace Sciences Meeting Reno, NV, USA, January 11–14, 1993 p705

2. Wang L 1995 Vac. Cryogenics 1 2
王立 1995 真空与低温 1 2

3. Wang L, Qin X G 2002 Vac. Cryogenics 8 2
王立, 秦晓刚 2002 真空与低温 8 2

4. Ch J Mateo-Velez, Sarrail H P, Roussel J F 2010 Technical Manual of SPIS Final Report FR 10/14511 DESP

5. Whipple E C, Krinsky I S, Torbert R B, Olsen R C 1983 Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium Noordwijk, The Netherlands, September 13–16, 1983 p35

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3