Generation of quadripartite entanglement based on four-wave mixing process and linear beam splitter

Author:

Yu Sheng,Liu Huan-Zhang,Liu Sheng-Shuai,Jing Jie-Tai, ,

Abstract

As a crucial quantum resource in quantum information processing, multipartite entanglement plays an important role not only in the field of testing basic quantum effects, but also in the applications of quantum network, quantum communication and quantum computing. The generation of multipartite entanglement usually involves many complex linear processes and nonlinear processes. In this paper, we theoretically propose a scheme for generating genuine quadripartite entanglement by linking two independent four-wave mixing (FWM) processes with one linear beam splitter (BS). Here, we use one linear BS to mix the probe beams amplified by two independent FWM processes. We first set the transmissivity of the linear BS to be 0.5 and study the effect of the intensity gain of the system on quadripartite entanglement by applying the positivity under partial transposition (PPT) criterion. The results show that there exists genuine quadripartite entanglement in all gain regions, and the degree of entanglement increases with intensity gain increasing. And then, the dependence of quadripartite entanglement on the transmissivity of the linear BS is studied when the intensity gains of two independent FWM processes are both set to be 3. We find that the transmissivity of the linear BS can affect the entanglement properties of the system. At the same time, we also find that the system can generate genuine quadripartite entanglement when the transmissivity of the linear BS is not equal to 0 or 1. Finally, in order to reveal the entanglement structure of the system, we further investigate the dependence of the possible tripartite entanglement and bipartite entanglement on the intensity gain of the system by using the PPT criterion. The results show that there exists the genuine tripartite entanglement in this system, and the degree of entanglement increases as the intensity gain increases. However, there exists no genuine bipartite entanglement in this system, some of bipartite states are always separable, and the entanglement of the other bipartite states gradually become weak and eventually disappear with the increase of the intensity gain. Our theoretical result provides a simple and reliable scheme for generating genuine quadripartite entanglement by using FWM process in atomic ensemble and linear BS.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3