Molecular junction stretching and interface recognition: Decode the mystery of high/low conductance switching in stretching process of 4, 4′-bipyridine molecular junction

Author:

Suo Yu-Qing,Liu Ran,Sun Feng,Niu Le-Le,Wang Shuang-Shuang,Liu Lin,Li Zong-Liang,

Abstract

The high/low conductance switching in stretching process of 4,4′-bipyridine molecular junction is a distinctive phenomenon in molecular electronics, which is still a mystery and has been unsolved for more than one decade. Based on the techniques and processes of experimental measurement, the <i>ab initio</i>-based adiabatic molecule-junction-stretch simulation (AMJSS) method is developed, by which the stretching processes of 4,4′-bipyridine molecular junctions are calculated. The conductance traces of the molecular systems in the stretching processes are studied and the mystery of high/low conductance switching in the stretching processes of 4,4′-bipyridine molecular junction is decoded by using the one-dimensional transmission combined with the three-dimensional correction approximation (OTCTCA) method. The numerical results show that, in the stretching process of 4,4′-bipyridine molecular junction, the upper terminal nitrogen atom in the pyridine ring is easy to vertically adsorb on the second gold layer of the probe electrode. At the same time, the molecule produces unique lateral-pushing force to push the tip atoms of the probe electrode aside. Thus, the high conductance plateau arises. With the molecular junction further stretched, the upper terminal nitrogen atom of the molecule shifts from the second gold layer to the tip gold atom of the probe electrode with the tip gold atom moving back to the original lattice position. Consequently, the conductance value decreases by about 5–8 times, and the low conductance plateau is presented. According to our calculations, the phenomenon of high/low conductance switching in the stretching process of 4,4′-bipyridine molecular junction also indicates that, single surface gold atom often lies on the surface of substrate electrode. Moreover, the phenomenon of high/low conductance switching can only be found when the molecule is adsorbed on the surface gold atom of the substrate electrode. Thus, using conductance traces measured in the stretching processes of molecular junction and with the help of theoretical calculations, the interface structures of molecular junctions can be recognized efficiently. Our study not only decodes the physical process and intrinsic mechanism of the high/low conductance switching phenomenon of 4,4′-bipyridine molecular junction, but also provides significant technique information for using pyridine-based molecule to construct functional molecular devices, such as molecular switch, molecule memory, molecular sensor, etc.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3