Author:
Fan Qian ,Xu Jian-Gang ,Song Hai-Yang ,Zhang Yun-Guang , ,
Abstract
Effects of individual layer thickness and strain rate on the mechanical behavior of copper-gold multilayer nanowires as well as the dislocation nucleation mechanism under a uniform tensile loading are investigated using molecular dynamics method. Simulations indicate that the highest yield strength increases with the increase of the individual layer thickness. Furthermore, the result also shows that the mechanical properties in the tensile process at different strain rates are dramatically different from each other, where the dislocation motion and twinning deformation are at a lower strain rate, while the individual atoms are at a higher strain rate for leading to amorphization. The general conclusions derived from this work can provide a guideline for the design of high performance multilayer composite materials.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献