Influence of static strong magnetic field on antenna radiation in hypersonic vehicle

Author:

Zhang Tian-Cheng,Cheng Ai-Qiang,Bao Hua-Guang,Ding Da-Zhi, ,

Abstract

To enhance the radiation performance of the Beidou antenna in the near-space hypersonic vehicle, the static strong magnetic field is used to weaken the electron density in plasma surrounding the antenna. In order to demonstrate the effect of this program, a time-domain multi-physical method is proposed. In the proposed method, what is first analyzed is the reduction of electron concentration in plasma sheath by static strong magnetic field with the spectral element time domain (SETD) method, which has spectral accuracy. Then, the electron density after mitigation is extracted to replace the original electron concentration around the antenna. Hence, the distribution of the manipulated plasma sheath can be obtained. Finally, the radiation characteristics of BeiDou antenna installed in the vehicle are analyzed by the conformal finite difference time domain (CFDTD) method. The simulation results exhibit radiation patterns under different conditions. With the plasma sheath, the radiated electromagnetic waves are greatly attenuated, which will significantly affect the transmission of communication signals. Importantly, the radiation patterns are effectively improved with the external static magnetic field, confirming that it provides an effective tool to mitigate the influence of plasma sheath on the radiation performance of antenna in hypersonic vehicle.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3