PECVD-prepared high-quality GaN films and their photoresponse properties

Author:

Liang Qi,Yang Meng-Qi,Zhang Jing-Yang,Wang Ru-Zhi,

Abstract

In this study, the high-quality GaN films are prepared by a simple, green and low-cost plasma enhanced chemical vapor deposition (PECVD) method at 950 ℃, with Ga<sub>2</sub>O<sub>3</sub> and N<sub>2</sub> serving as a gallium source and a nitrogen source, respectively. In order to improve the crystal quality of GaN films and ascertain the photoresponse mechanism of GaN films, the effect of the preparation temperature of GaN buffer layer on the crystal quality and photoelectric properties of GaN thin films are investigated. It is indicated that with the increase of the buffer temperature of GaN films, the crystal quality of GaN films first increases and then decreases, and the highest crystal quality is obtained at 875 ℃. When buffer layer temperature is 875 ℃, the calculated total dislocation density is 9.74 × 10<sup>9</sup> cm<sup>–2</sup>, and the carrier mobility is 0.713 cm<sup>2</sup>·V<sup>–1</sup>·s<sup>–1</sup>. The crystal quality of GaN film after being annealed is improved. The total dislocation density of GaN film decreases to 7.38 × 10<sup>9</sup> cm<sup>–2</sup>, and the carrier mobility increases to 43.5 cm<sup>2</sup>·V<sup>–1</sup>·s<sup>–1</sup>. The UV-Vis absorption spectrum results indicate that the optical band gap of GaN film is 3.35 eV. The scanning electron microscope (SEM) results indicate that GaN film (buffer layer temperature is 875 ℃) has smooth surface and compact structure. The Hall and X-ray photoelectron spectroscopy (XPS) results indicate that there are N vacancies, Ga vacancies or O doping in the GaN film, which act as deep level to capture photogenerated electrons and holes. With the bias increasing, the photoresponsivity of the GaN film photodetector gradually increases and then reaches a saturation value. This is due to the deep levels produced by vacancy or O doping. In addition, photocurrent response and recovery of GaN film are slow, which is also due to the deep levels formed by vacancy or O doping. At 5-V bias, the photoresponsivity of GaN film is 0.2 A/W, rise time is 15.4 s, and fall time is 24 s. Therefore, the high-quality GaN film prepared by the proposed green and low-cost PECVD method present a strong potential application in ultraviolet photodetector. The PECVD method developed by us provides a feasible way of preparing high-quality GaN films, and the understanding of the photoresponse mechanism of GaN films provides a theoretical basis for the wide application of GaN films.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3