Transport analysis of NBI heating H-mode experiment on HL-2 A with integrated modeling

Author:

Luo Yi-Ming,Wang Zhan-Hui,Chen Jia-Le,Wu Xue-Ke,Fu Cai-Long,He Xiao-Xue,Liu Liang,Yang Zeng-Chen,Li Yong-Gao,Gao Jin-Ming,Du Hua-Rong,Kulun Integrated Simulation and Design Group , , ,

Abstract

The physical process of tokamak plasma spans a large space-time scale, and the main physical processes differ widely in different spatial regions (such as core, pedestal, scraping-off layer, divertor region), so it is necessary to adopt the integrated modeling method to analyze the physical problems on a global multi-space-time scale. In order to study in depth the transport and confinement during the steady-state or ramp-up of the tokamak discharging experiment, it is necessary to use a variety of physical programs to carry out integrated simulation research and physical analysis. Based on the OMFIT platform, in this paper the integrated simulation verification and analysis of the shot #37012 are conducted, which is a high-<inline-formula><tex-math id="M1">\begin{document}$\beta $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20211941_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20211941_M1.png"/></alternatives></inline-formula> discharge experiment on HL-2A device and verifies the reliability and applicability of those programs. In this process, the experimental parameters are checked and supplemented by selecting appropriate models. The simulation results after evolution are consistent with the experimental results. On this basis, we use the TGLF model to analyze the linear electrostatic drift wave instability in the core region. The reason for the improvement of the H-mode confinement by NBI off-axis heating is that the ETG instability in the NBI power deposition region is suppressed. The transport is dominated by ITG instability in the internal transport barrier (ITB), and the transport is reduced to the level of neoclassical transport.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3