Up-conversion charging dynamics exampled by Mn<sup>2+</sup>-activated persistent phosphor

Author:

Li Chen-Lin,Zhao Xi-Yu,Guo Tong,Liu Feng,Wang Xiao-Jun,Liao Chuan,Zhang Jia-Hua, , ,

Abstract

Persistent phosphor as a kind of light-emitting material can store excitation energy in the so-called traps, and then persistently release the energy in the form of light emission after the end of excitation. This emission is called persistent luminescence. Much attention has been paid to optimizing the emission performance of persistent phosphors, including emission wavelength and persistent time. However, research on the excitation for charging persistent phosphors is relatively lacking. To acquire the persistent luminescence effectively, the traps need to be filled typically by ionizing irradiation. That is, high-energy light (such as ultraviolet light) is a general requirement for charging the persistent phosphors. Taking into account the fact that low-energy illumination (e.g. visible or infrared light) is much more suitable and less harmful than ultraviolet light for some practical applications, taking advantage of the low-energy light excitation is therefore an urgent issue to be solved in the persistent luminescence area. Several low-energy excitation approaches have been reported, in which up-conversion charging (UCC) is a promising candidate for charging phosphors using low-energy excitation light sources. The definition of UCC is as follows: UCC is a non-linear excitation for storage phosphors, in which the traps are typically filled via a two-step ionization mechanism. Prior research on the UCC has focused primarily on the demonstration of two-step ionization and the associated trapping properties. Recently, researchers have realized that the excitation light may release some trapped electrons while filling the traps (i.e. excitation-light stimulated detrapping). Competition between the trapping and detrapping during the UCC has been roughly described on the assumption that the illumination dose is in a certain range and the effect of ambient-temperature stimulated detrapping is negligible. Despite the initial progress, the exact effect of detrapping on the UCC process needs to be further explored. Here we demonstrate the effect of detrapping on UCC dynamics by a rate equation approach. Accordingly, taking LaMgGa<sub>11</sub>O<sub>19</sub>:Mn<sup>2+</sup> phosphor illuminated by a 450 nm laser for example, we measure its thermoluminescence. Our measurements reveal that the competition between the trapping and detrapping depends both on illumination power and on illumination duration. The experimental results are consistent well with the theoretical predictions, thereby offering a new insight into the understanding of UCC. In addition, the experimental demonstration on the LaMgGa<sub>11</sub>O<sub>19</sub>:Mn<sup>2+</sup> phosphor allows us to explore the generality of the present UCC model. Accordingly, we expect some existing phosphors can now be revisited.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3