TM01 dominant mode coaxial virtual cathode oscillator with feedback construction

Author:

Zhang Yun-Jian,Ding En-Yan, , ,

Abstract

Virtual cathode oscillator, as a kind of space-charge high-power microwave source, has an output microwave mode that is generally an admixture of TM<sub>01</sub> mode and TE<sub>11</sub> mode. The analysis of the resonator in the anode mesh shows that when the transmission of the anode mesh is high, it is easy to produce strong reflected electron beam, forming a conical quasi-resonator structure, thus enhances the output of TE<sub>11</sub> mode. When the transmission of the anode mesh is low, the beam intensity of the reflected electron beam can be weakened due to the absorption of the metal mesh, and the TE<sub>11</sub> mode can be suppressed, so the output mode is mainly TM<sub>01</sub> mode. In this paper, a feedback coaxial virtual cathode oscillator is investigated with the use of numerical simulation and experimental data analysis. The feedback coaxial virtual cathode oscillator is formed by closing the end of the anode mesh through a metal plate and changing the path of the reflected electron beam from the metal mesh to the gap between cathode and anode. The particle in cell method is used in the numerical simulation of the virtual cathode oscillator, and the impedance of the 400 kV diode is about 13 Ω under a voltage of 400 kV. After the optimal design by numerical simulation, the average output microwave power from the virtual cathode oscillator is 1.5 GW, and the frequency of the microwave is about 4.2 GHz, which is basically consistent with the theoretical calculation results. In this new kind of virtual cathode oscillator, the distribution of reflected electrons is modified by the feedback sheet on the anode mesh, the output high power microwave pattern is demonstrated to be dominated by TM<sub>01</sub> mode. The microwave power obtained in the experiment is measured by the array antenna power density integration method. For axisymmetric mode, a receiving antenna array is formed by placing multiple receiving antennas on one side of the axis of the antenna pattern. The power densities of different angles on the horizontal circumference with the phase center of the transmitting antenna are measured, the average power density of two adjacent points is multiplied by the area of the spherical belt between these two points, and then the resulting power is added by the power between the adjacent two points, thereby obtaining the total radiation power. With this method, the microwave power is 850 MW with frequency 4.1 GHz and pulse width 30 ns under slaving voltage 400 kV.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference21 articles.

1. Benford J, Swgle J 1992 High Power Microwaves (New York: Artech House Inc.) pp1–3

2. Jiang W H, Woolverton K, Dickens J 1999 IEEE Trans. Plasma Sci. 27 1538

3. Chen X P, Dickens J, Choi E H 2003 Proc of the 2003 IEEE Inter Pulse Power Conf Dallas, TX, USA, June 15–18, 2003 p1165

4. Luo X, Liao C, Meng F B 2006 Acta Phys. Sin. 55 5774
罗雄, 廖成, 孟凡宝 2006 物理学报 55 5774

5. Evgney G, Pavel M 2015 IEEE Trans. Plasma Sci. 43 1014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3