Convergence for Jacobi elliptic function series solutions to one kind of perturbed Kadomtsev-Petviashvili equations

Author:

Jiao Xiao-Yu,Jia Man,An Hong-Li, , ,

Abstract

This paper is devoted to constructing series solutions to one kind of perturbed Kadomtsev-Petviashvili (KP) equations, of which the perturbation terms are of all six-order derivatives of space variable <inline-formula><tex-math id="M10">\begin{document}$x$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M10.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M11">\begin{document}$y$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M11.png"/></alternatives></inline-formula>. First, by making the series solutions expansion with respect to the homotopy parameter <inline-formula><tex-math id="M12">\begin{document}$q$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M12.png"/></alternatives></inline-formula>, the homotopy model of the perturbed KP equations can be decomposed into infinite number of approximate equations of the general form. Second, Lie symmetry method is applied to these approximate equations to achieve similarity solutions and the related similarity equations with common formulae in three cases. Third, for the first few similarity equations in the third case, Jacobi elliptic function solutions are constructed through a step-by-step procedure and are also subject to common formulae for each equation of the whole kind of perturbed KP equations. Finally, one kind of compact series solutions for the original perturbed KP equations is obtained from these Jacobi elliptic function solutions. The convergence of these series solution is dependent on perturbation parameter <inline-formula><tex-math id="M13">\begin{document}$\epsilon$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M13.png"/></alternatives></inline-formula>, auxiliary parameter <inline-formula><tex-math id="M14">\begin{document}$\theta$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M14.png"/></alternatives></inline-formula> and arbitrary constants <inline-formula><tex-math id="M15">\begin{document}$\{a, b, c\}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M15.png"/></alternatives></inline-formula>, among which the most prominent is decreasing arbitrary constant <inline-formula><tex-math id="M16">\begin{document}$c$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M16.png"/></alternatives></inline-formula> or perturbation parameter <inline-formula><tex-math id="M17">\begin{document}$\varepsilon$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M17.png"/></alternatives></inline-formula>. For the perturbation term in perturbed KP equations, given the derivative order <inline-formula><tex-math id="M18">\begin{document}$n$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M18.png"/></alternatives></inline-formula> of <inline-formula><tex-math id="M19">\begin{document}$u$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M19.png"/></alternatives></inline-formula> with respect to <inline-formula><tex-math id="M20">\begin{document}$y$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M20.png"/></alternatives></inline-formula>, smaller (greater) <inline-formula><tex-math id="M21">\begin{document}$|a/b|$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M21.png"/></alternatives></inline-formula> causes the improved convergence provided <inline-formula><tex-math id="M22">\begin{document}$n\leqslant 1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M22.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M22.png"/></alternatives></inline-formula> (<inline-formula><tex-math id="M23">\begin{document}$n\geqslant 3$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M23.png"/></alternatives></inline-formula>). Nonetheless, the decrease of arbitrary constant <inline-formula><tex-math id="M24">\begin{document}$|c|$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M24.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M24.png"/></alternatives></inline-formula> or <inline-formula><tex-math id="M25">\begin{document}$|a/b|$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M25.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20190333_M25.png"/></alternatives></inline-formula> leads to the enlargement of period in a certain direction and thus should be specified appropriately. This paper also considers the perturbed KP equations with more general perturbation terms. Only if the derivative order of the perturbation term is an even number, do Jacobi elliptic function series solutions exist for perturbed KP equations. The existence of series solutions can serve as a criterion of solvability for perturbed equations.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference28 articles.

1. Cole J D 1968 Perturbation Methods in Applied Mathematics (Waltham: Blaisdell)

2. Van Dyke M 1975 Perturbation Methods in Fluid Mechanics (Stanford: Parabolic Press)

3. Bluman G W, Kumei S 1989 Symmetries and Differential Equations (Berlin: Springer)

4. Olver P J 1993 Applications of Lie Group to Differential Equations (2nd ed.) (New York: Springer)

5. Bluman G W, Cole J D 1969 J. Math. Mech. 18 1025

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3