Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar

Author:

Chen Jian-Ling,Wang Hui,Jia Huan-Yu,Ma Zi-Wei,Li Yong-Hong,Tan Jun, , ,

Abstract

<sec>Magnetar is a kind of pulsar powered by magnetic field energy. Part of the X-ray luminosities of magnetars in quiescence have a thermal origin and can be fitted by a blackbody spectrum with temperature <i>kT</i> ~ 0.2-0.6 keV, much higher than the typical values for rotation-powered pulsars. The observation and theoretical study of magnetar are one of hot topics in the field of pulsar research. The activity and emission characteristics of magnetar can be attributed to internal superhigh magnetic field. According to the work of WGW19 and combining with the equation of state, we first calculate the electric conductivity of the crust under a strong magnetic field, and then calculate the toroidal magnetic field decay rate and magnetic energy decay rate by using an eigenvalue equation of toroidal magnetic field decay and considering the effect of general relativity. We reinvestigate the <i>L</i><sub>X</sub>-<i>L</i><sub>rot</sub> relationship of 22 magnetars with persistent soft X-ray luminosities and obtain two new fitting formulas on <i>L</i><sub>X</sub>-<i>L</i><sub>rot</sub>. We find that for the magnetars with <i>L</i><sub>X</sub> < <i>L</i><sub>rot</sub>, the soft X-ray radiations may originate from their rotational energy loss rate, or from magneto-sphere flow and particle wind heating. For the magnetars with <i>L</i><sub>X</sub> > <i>L</i><sub>rot</sub>, the Ohmic decay of crustal toroidal magnetic fields can provide their observed isotropic soft X-ray radiation and maintain higher thermal temperature.</sec><sec>As for the initial dipole magnetic fields of magnetars, we mainly refer to the rersearch by Viganò et al. (Viganò D, Rea N, Pons J A, Perna R, Aguilera D N, Miralles J A 2013 <i>Mon. Not. R. Astron. Soc.</i> <b>434</b> 123), because they first proposed the up-dated neutron star magneto-thermal evolution model, which can successfully explain the X-ray radiation and cooling mechanism of young pulsars including magnetars and high-magnetic field pulsars. Objectively speaking, as to the decay of toroidal magnetic fields, there are some differences between our theoretical calculations of magnetic energy release rates and the actual situation of magnetic field decay in magnetars, this is because the estimate of initial dipolar magnetic field, true age and the thickness of inner crust of a magnetar are somewhat uncertain. In addition, due to the interstellar-medium’s absorptions to soft X-ray and the uncertainties of distance estimations, the observed soft X-ray luminosities of magnetars have certain deviations. With the continuous improvement of observation, equipment and methods, as well as the in-depth development of theoretical research, our model will be further improved, and the theoretical results are better accordant with the high-energy observation of magnetars.</sec><sec>We also discuss other possible anisotropy origins of soft X-ray fluxes of magnetars, such as the formation of magnetic spots and thermoplastic flow wave heating in the polar cap. Although anisotropic heating mechanisms are different from Ohmic decay, all of them require that there exist strong toroidal magnetic fields inside a magnetar. However, the anisotropic heating mechanisms require higher toroidal multipole fields inside a magnetar (such as magnetic octupole field) and are related to complex Hall drift: these may be our research subjects in the future.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3