Measurement and compensation of frequency-dependent attenuation in ultrasonic backscatter signal from cancellous bone

Author:

Dong Rui,Liu Cheng-Cheng,Cai Xun-Bin,Shao Liu-Lei,Li Bo-Yi,Ta De-An, ,

Abstract

Ultrasonic backscatter has been gradually applied to the assessment and diagnosis of bone disease. The heavy frequency-dependent attenuation of ultrasound results in weak ultrasonic signals with poor signal-to-noise ratio and serious wave distortions during propagation in cancellous bone. Ultrasonic attenuation measured with the through-transmission method is an averaged result of ultrasonically interrogated tissues (including the soft tissue, cortical bone and cancellous bone). Therefore, the through-transmission measurements can not accurately provide ultrasonic attenuation of cancellous bone of interest. The purpose of this study is to estimate ultrasonic frequency-dependent attenuation with ultrasonic backscatter measurements and to compensate for the frequency-dependent attenuation in an ultrasonic backscatter signal from cancellous bone. <i>In-vitro</i> ultrasonic backscatter and through-transmission measurements are performed on 16 cancellous bone specimens by using 1.0-MHz transducers. Spatial scans are performed in a 10 mm × 10 mm scanned region with a spatial interval of 0.5 mm for each bone specimen. The frequency slope of ultrasonic attenuation is measured with the ultrasonic through-transmission signals serving as a standard value. Four different algorithms (the spectral shift method, the spectral difference method, the spectral log difference method, and the hybrid method) are used to estimate the frequency slope of ultrasonic attenuation coefficient from ultrasonic backscatter signal. The results show that the frequency-dependent attenuation coefficient ranges from 2.3 dB/mm/MHz to 6.2 dB/mm/MHz for the bovine bone specimens. The through-transmission measured frequency slope of ultrasonic attenuation coefficient is (4.14 ± 1.14) dB/mm/MHz (mean ± standard deviation), and frequency slopes of ultrasonic attenuation coefficient are estimated by four backscattering methods to be (3.88 ± 1.15) dB/mm/MHz, (4.00 ± 0.98) dB/mm/MHz, (3.77 ± 0.84) dB/mm/MHz, and (4.05 ± 0.85) dB/mm/MHz, respectively. The estimated frequency-dependent attenuation is significantly correlated with the standard attenuation value (<i>R</i> = 0.78-0.92, <i>p</i> < 0.01), in which the spectral difference method (<i>R</i> = 0.91, <i>p</i> < 0.01) and the hybrid method (<i>R</i> = 0.92, <i>p</i> < 0.01) are more accurate with an estimated error less than 20%. The results prove that it is feasible to measure the frequency-dependent attenuation from ultrasonic backscatter signal of cancellous bone. Based on Fourier transform-inverse Fourier transform, the frequency-dependent attenuation can be compensated.The compensated ultrasonic signals are with significantly improved signal intensity and improved signal-to-noise ratio. This study is conducive to the subsequent ultrasonic backscatter measurement and ultrasonic imaging of cancellous bone.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference30 articles.

1. Wang M 1997 J. Chin. Clin. Med. Imaging 8 87
王牧 1997 临床医学影像杂志 8 87

2. Hqrrar K, Hamami L, Lespessailles E, Jennane R 2013 Biomed. Signal Process. 8 657

3. Ta D A, Wang W Q 2013 Appl. Acoust. 32 199
他得安, 王威琪 2013 应用声学 32 199

4. Liu C C, Ta D A, Wang W Q, Fujita F, Hachiken T, Matsukawa M, Mizuno K 2014 J. Appl. Phys. 115 064906

5. Zhang R, Ta D A, Liu C C, Chen C 2013 Ultrasound Med. Biol. 39 1751

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3