Quantum phase gate on a single superconducting Λ-type three-level and two superconducting resonators

Author:

Liu Chao ,Wu Yun-Wen ,

Abstract

Quantum phase gate is a necessary quantum component for quantum coding and quantum computing. Compared with the traditional gate circuit, quantum phase gate has the characteristics of unitarity and reversibility. Therefore, we construct a model of mutual coupling between a single Λ -type three-level atom and two superconducting resonators, which is connected by a capacitor. By separately controlling the disconnection time and connection time of the two superconducting resonators in the model as well as by controlling the magnetic flux of the superconducting quantum interference device (SQUID) to make a certain transition energy level of the Λ -type three-level atom equal the relevant resonance energy level, the interaction between the two levels can be achieved and the system can be manipulated. Afterwards, we propose four control schemes for implementing the controlled-Z gate through a three-step operation, and two operation schemes for implementing swap gate through a four-step operation. At the same time, the numerical simulations of fidelity are implemented for the first operation scheme for controlling the Z-gate. The results of fidelity discussion show that the fidelity of this scheme is 96.67% through the running time of 20.83 ns, thus it proves that this scheme is theoretically feasible. The increase in the three attenuation parameters, i.e., attenuation rate, relaxation rate, and phase shift ratio, will reduce the fidelity of the system, while the increase in coupling strength will cut down the time of system operation, thus reducing the influence of attenuation parameters and improving the system fidelity.In this paper we present a quantum phase gate scheme in which two superconducting resonators and a Λ -type three-level atom are coupled with two capacitors. Since the experimental setup is simplified, it is important to reduce the coherence between devices. In addition, the solution has no restriction on the strength of the classic pulse principally, through which the system operates faster and the fidelity of the phase gate is improved effectively.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3