Translation compensation and micro-motion parameter estimation of laser micro-Doppler effect

Author:

Guo Li-Ren ,Hu Yi-Hua ,Dong Xiao ,Li Min-Le ,

Abstract

Precise target identification is significant for commanding and identifying enemies. The micro-Doppler effect (MDE) can reflect the subtle movement characteristics of the targets, which provides a new way of detecting and recognizing the target. However, the current research mainly focuses on the micro-motion feature extraction and classification of the targets, which is not capable of identifying the targets of the same type. In fact, by accurately estimating the micro-motion parameters and combining sufficient prior knowledge, the target can be accurately identified. Compared with the microwave radar, the laser detected MDE has high sensitivity and precision in micro-motion parameter estimation. This is more conducive to realizing the accurate classification and fine identification of the targets. In real detection, the MDE always exists in the moving targets. This will generate a mixed echo signal modeled by the polynomial phase signal and sinusoidal frequency modulation (SFM) signal. So far, there have been no effective methods of estimating the micro-motion parameters in such mixed signals. In this regard, a set of translational motion compensation and micro-motion parameter estimation methods is proposed in this paper. A bandwidth searching method based on the fractional Fourier transform (FrFT) is presented to precisely estimate the translation parameters, which will be used to realize the compensation for the translational motion. The advanced particle filtering (PF) method using the static parameter model is designed for the micro-motion parameters in the remaining SFM term. Given the lack of particle diversity in static parameter PF, the Markov chain Monte Carlo sampling is employed, which also helps to improve the algorithm efficiency. Meanwhile, a new likelihood function in calculating the particle weights is designed by using the cumulative residual. With this improvement, the correct convergence under multi-dimensional parameter condition is guaranteed. The proposed method can avoid the influence from error transfer and achieve efficient and accurate estimation. Compared with the typical method that combines the time-frequency analysis and the polynomial fitting through the simulation, the proposed FrFT method is verified to have little computation complexity and high estimation accuracy, where the relative estimation errors of the translational parameters are kept at 0.64% and 0.45%, respectively. The waveform similarity of the SFM signal phase between the compensated signal and the real one indicates that the accuracy fully meets the requirement for accurate estimation of the micro-motion parameters. Further, the simulation result also shows the high efficiency of the improved PF algorithm. The convergence time consumed by the proposed algorithm is 0.353 s, while the traditional method needs 0.844 s. In the end, the comparison with the experimental data from the traditional inverse Radon transform shows the effectiveness and necessity of the proposed method. The research results are conducive to the accurate and rapid estimation of micro-motion parameters, which lays a foundation for the fine target recognition based on the MDE.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference24 articles.

1. Chen V C 2011 The Micro-Doppler Effect in Radar (London: Artech House) p20

2. Zhang D H 2016 M. S. Thesis (Beijing: Institute of Technology) (in Chinese) [张德华 2016 硕士学位论文 (北京: 北京理工大学)]

3. Pawan S, Ahmad F, Amin M 2011 Signal Process. 6 1409

4. Yang W G, Qu W X, Zhang R Y 2016 J. Equip. Acad. 27 107 (in Chinese) [杨文革, 屈文星, 张若禹 2016 装备学院学报 27 107]

5. Gini F, Giannakis G B 1999 IEEE Trans. Signal Process. 47 363

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3