First-principle study on electronic structures, magnetic, and optical properties of different valence Mn ions doped InN

Author:

Xu Da-Qing ,Zhao Zi-Han ,Li Pei-Xian ,Wang Chao ,Zhang Yan ,Liu Shu-Lin ,Tong Jun , , ,

Abstract

InN,as an important Ⅲ-nitride,has high electron mobility and low electron effective mass,so it has a wide range of applications in optoelectronic devices,high-frequency high-speed devices,and high-power microwave devices.The Ⅲ-nitrides based dilute magnetic semiconductors (DMSs) can be developed by leveraging the existing fabrication technology for Ⅲ-nitride semiconductor electronic devices,leading to novel semiconductor spintronic devices with a multiplicity of electrical,optical,and magnetic properties.It has been reported that room temperature ferromagnetism exists in InN nanostructures and thin films as well as InN-based DMSs systems.However,the origin mechanism and the formation mechanism of ferromagnetism in these materials have not been fully understood.In Ⅲ-V compound semiconductors,the transition element Mn ions exist mostly in the form of Mn2+ valences while it is also possible for them to emerge in Mn3+ valence states under certain conditions.Although Mn2+ and Mn3+ valance states affect the physical properties of the doped semiconductor differently,there lacks in-depth understanding of such different effects resulting from Mn doping in InN. Under the framework of the density functional theory,in this paper we adopt the generalized gradient approximation (GGA+U) plane wave pseudopotential method to calculate the electronic structure,energy and optical properties of undoped InN and InN doped with three different orderly placeholders of Mn2+ or Mn3+ after geometry optimization.The conducted analysis shows that the system exhibits lower total and formation energies,and improved stability after Mn doping.Manganese doping introduces a spin-polarized impurity band near the Fermi level,and as a result the doped material system has obvious spin polarization.Doping with different valences of Mn ions lead to varying effects on the electronic structure and magnetic property of the material system.The analyses of electronic structure and magnetic property show that both the p-d exchange mechanism and the double exchange mechanism play important roles in the magnetic exchange of the doped system,and Mn3+ doping helps to push the Curie temperature above the room temperature.Comparing with the pure InN,the value of the static dielectric function of the doped system increases significantly.The present analysis concludes that the imaginary part of the dielectric function and the absorption spectrum of the doped system presents strong new peaks in the low-energy region due to the electronic transition associated with the spin-polarized impurity band near the Fermi level. Broadly,this work sheds new light on the microscopic mechanism for the magnetic ordering of Ⅲ-nitride based DMSs,and lays a foundation for developing the novel Ⅲ-nitride based DMSs and devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3