Perturbation to Noether symmetries and adiabatic invariants for Birkhoffian systems based on El-Nabulsi dynamical models

Author:

Chen Ju ,Zhang Yi , ,

Abstract

In this paper, we study the problem of perturbation to Noether symmetries and adiabatic invariants for a Birkhoffian system under small disturbance based on the El-Nabulsi dynamical model. First, the dynamical model presented by El-Nabulsi, which is based on the Riemann-Liouville fractional integral under the framework of the fractional calculus, is extended to the Birkhoffian system, and El-Nabulsi-Birkhoff equations for the Birkhoffian system are established. Then, by using the invariance of the El-Nabulsi-Pfaff action under the infinitesimal transformations, the definition and criterion of the Noether quasi-symmetric transformation are given, and the exact invariant caused directly by the Noether symmetry is obtained. Furthermore, by introducing the concept of high-order adiabatic invariant of a mechanical system, the relationship between the perturbation to the Noether symmetry and the adiabatic invariant after the action of small disturbance is studied, the condition that the perturbation of symmetry leads to the adiabatic invariant and its formulation are presented. As a special case, the perturbation to Noether symmetries and corresponding adiabatic invariants mechanics of non-conservative systems in phase space under El-Nabulsi models and classical Birkhoffian systems are discussed. At the end of the paper, taking the well-known Hojman-Urrutia problem for example, its Noether symmetries under the El-Nabulsi dynamical model is investigated and corresponding exact invariants and adiabatic invariants are presented.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference34 articles.

1. Birkhoff G D 1927 Dynamical Systems (Providence: AMS College Publication) pp55-58, 89-96

2. Santilli R M 1983 Foundations of Theoretical Mechanics (II) (New York: Springer Verlag) pp30-42

3. Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) pp37-95 (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 BIRKHOFF 系统动力学 (北京: 北京理工大学出版社) 第37–95页]

4. Galiullan A S 1989 Analytical Dynamics (Moscow: Nauka) pp249-263 (in Russian)

5. Mei F X 2013 Dynamics of Generalized Birkhoffian System (Beijing: Science Press) pp1-29 (in Chinese) [梅凤翔 2013 广义Birkhoff系统动力学 (北京: 科学出版社) 第1–29页]

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3