Investigation on the electrical properties of anatase and rutile Nb-doped TiO2 by GGA(+U)

Author:

Yang Zhen-Hui ,Wang Ju ,Liu Yong ,Wang Kang-Kai ,Su Ting ,Guo Chun-Lin ,Song Chen-Lu ,Han Gao-Rong ,

Abstract

Crystal structure, electronic properties, and stability of anatase and rutile Nb-doped TiO2 (Nb:TiO2) compounds with different doping concentrations are studied by the combination of GGA and GGA+U methods within the density functional theory based first-principle calculation. And the main research work and contents are listed as follows: The anatase Nb:TiO2 appears as a degenerated semiconductor which behaves as an intrinsic metal. Its metallic property arises from Nb substitution into the Ti site, providing electrons to the conduction band. In contrast, the rutile Nb:TiO2 shows insulating behaviors. Ionization efficiency of Nb in anatase Nb:TiO2 is higher than that in rutile. We expect that anatase Nb:TiO2 is a potential material for transparent conducting oxide (TCO) while rutile Nb:TiO2 is not. The doped systems show different electronic characteristics, such as band structure, Fermi energy, and effective mass of carriers at different doping levels. In higher dopant concentration nNb, the ionization efficiency decreases slightly. Calculated defect-formation energy shows that Ti-rich material growth conditions are not in favor of the introduction of Nb while Nb can be easily doped in Nb:TiO2 under O-rich growth conditions. Nb dopant is difficult to be doped at higher doping level for both anatase and rutile Nb:TiO2.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3