The study of nonresonant Raman excited virtual state of carbazole molecule

Author:

Bo Li-Juan ,Chen Yan-Rong ,Wang Pei-Jie ,Fang Yan ,

Abstract

According to the relationship between Raman intensity and the bond polarizability, we investigate the temporal bond polarizabilities of carbazole molecule from the Raman intensities. We obtain the bond polarizability of the final state and compare it with the electronic density of the ground state by the density functional theory method, then we discuss and analyze the characteristics of carbazole temporal bond polarizabilities. The results show that at the initial stage of exitation, the excited electrons tend to flow toward the bond that we called connecting bond, which connects the two six-member ring, but not toward the molecular periphery. The bond electronic density of the molecule ground state can be mapped out by the temporal bond polarizabilities at the final stage of relaxation, therefore we conclude that the excited electrons flow back to the skeleton bond. Furthermore, we find the relaxation characteristic time of connecting the bonds is longer than that of connecting the other bonds, this further confirms our observations mentioned above. These conclusions will improve our understanding of Raman excited virtual states of the molecule with the bridge bonds.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Wu G Z 2007 Raman Spectroscopy: A Intensity Approach (Beijing: Science Press)(in Chinese)[吴国祯 2007拉曼谱学峰强中的信息 (北京:科学出版社)]

2. Chantry G W 1971 Polarizability Theory for the Raman Effect (New York: Marcel Dekker)

3. Fang C, Wu G Z 2009 J. Raman Spectrosc. 40 308

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3