Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir

Author:

Zhang Xue-Qing ,Liang Jun , ,

Abstract

According to the chaotic feature of wind power time series, a combined short-term wind power forecasting approach based on ensemble empirical mode decomposition (EEMD)-approximate entropy and echo state network (ESN) is proposed. Firstly, in order to reduce the calculation scale of partial analysis for wind power and improve the wind power prediction accuracy, the wind power time series is decomposed into a series of wind power subsequences with obvious differences in complex degree by using EEMD-approximate entropy. Then, the forecasting model of each subsequence is created with least squares support vector machine (LSSVM), ESN and EEMD-ESN improved with the regularized high frequency parts. Finally, the simulation is performed by using the real data collected from a certain wind farm, the results show that the EEMD-ESN model is better in the training speed and forecasting accuracy, than those obtained from the least square support vector machine (LSSVM) model, which provides a new useful reference for the short-term forecasting of wind power in online engineering application.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference32 articles.

1. Liu J Z, Liu Y, Zeng D L, Liu J W, L Y, Hu Y 2012 Sci. China E 55 1140 [刘吉臻, 柳玉, 曾德良, 刘继伟, 吕游, 胡阳 2012 中国科学(E辑): 技术科学 42 437]

2. Ernst B, Oakleaf B, Ahlstrom M L, Lange M, Moehrlen C, Lange B, Focken U, Rohrig K 2007 IEEE Transactions on Power & Energy Magazine 5 78

3. Chen S Y, Dai H Z, Bai X M, Zhou X X 2000 Proceedings of the CSEE 20 26 (in Chinese) [陈树勇, 戴慧珠,白晓民, 周孝信 2000 中国电机工程学报 20 26]

4. Gao S, Dong L, Gao Y, Liao X Z 2012 Proceedings of the CSEE 32 32 (in Chinese) [高爽, 冬雷, 高阳, 廖晓钟 2012 中国电机工程学报 32 32]

5. Feng S L, Wang W S 2010 Proceedings of the CSEE 30 1 (in Chinese) [冯双磊, 王伟胜 2010 中国电机工程学报 30 1]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3