Photocarrier dynamics in zinc selenide studied with optical-pump terahertz-probe spectroscopy

Author:

Li Gao-Fang ,Ma Guo-Hong ,Ma Hong ,Chu Feng-Hong ,Cui Hao-Yang ,Liu Wei-Jing ,Song Xiao-Jun ,Jiang You-Hua ,Huang Zhi-Ming ,Chu Jun-Hao , , , ,

Abstract

Optical pump-terahertz (THz) probe spectroscopy is employed to investigate the photo-excited carrier relaxation process and the evolution of terahertz conductivity in ZnSe.With the pump pulse at a wavelength of 400 nm,the carrier relaxation process can be well fitted to a biexponential function.We find that the recombination process in ZnSe occurs through two components,one is the fast carrier recombination process,and the other is the slow recombination process.The fast carrier relaxation time constant is in a range from a few tens of picoseconds to hundreds of picoseconds, and slow carrier relaxation time constant ranges from one to several nanoseconds.We find that both the fast and the slow carrier relaxation time constant increase with the power density of pump beam increasing,which is related to the density of defects in the sample.Upon increasing the excitation power density,the defects are filled by the increased photo-excited carriers,which leads to an increase in the fast carrier relaxation time.While,the slow carrier relaxation time increasing with pump flux can be attributed to the filling of surface state.We also present the THz complex conductivity spectra of ZnSe at different delay times with a pump flux of 240 J/cm2.It is shown that the real part of the conductivity decreases with increasing the pump-probe delay time.The real part of the conductivity is positive and increases with frequency in each of the selective three delay times (2,20,and 100 ps),while the imaginary part is negative and decreases with frequency.The transient conductivity spectra at terahertz frequency in different delay times are fitted with Drude-Smith model.According to the fitting results from Drude-Smith model,with the pump-probe delay time increasing,the average collision time and the value of c1 decrease.Generally,a higher carrier density leads to a more frequent carrier-carrier collision,which means that the collision time should decrease with carrier density increasing. The abnormal carrier density dependence of collision time implies a predominance of backscattering in our ZnSe.The predominance of backscattering is also observed for the negative value of c1.The negative value of c1 indicates that some photocarriers are backscattered in ZnSe.With a delay time of 2 ps,the value of c1 approaches to -1,which indicates that the direct current (DC) conductivity is suppressed,and the maximum conductivity shifts toward higher frequency. With increasing the delay time,the value of c1 decreases:in this case DC conductivity dominates the spectrum.The study of the dynamics of photoinduced carriers in ZnSe provides an important experimental basis for designing and manufacturing the high speed optoelectronic devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3