Extraordinary magnetoresistance in nonmagnetic semiconductors: The effective-medium approximation
-
Published:2008
Issue:11
Volume:57
Page:7178
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Song Ya-Wu ,Sun Hua ,
Abstract
The self-consistent effective-medium approximation is used to study the extraordinary magnetoresistance effect observed in nonmagnetic semiconductors. The inhomogeneous materials are treated as a three-dimensional resistor network of binary disorder, where the receptivity of each component is a tensor describing both the zero-field resistance and the Hall effect. The effective conductivity tensor of the total system is calculated with applied magnetic field. The resulting transversal magnetoresistance, longitudinal magnetoresistance and effective Hall coefficient are shown for different component concentrations and magnetic fields. When the components have two different types of charge carriers, and the mismatch between the zero-resistivity is enlarged, the macroscopic magnetoresisance exhibits complex behaviors which are related closely with the formation of the percolation structure in the inhomogeneous system.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献