NiO/GaN p-n junction ultraviolet photodetector and self-powered technology

Author:

Wang Shun-Li,Wang Ya-Chao,Guo Dao-You,Li Chao-Rong,Liu Ai-Ping, ,

Abstract

<sec> Ultraviolet photodetector plays an important role in fire warning, missile tracking and dose detecting of ultraviolet sterilization and disinfection, which is closely related to human lives. With the development of integrated detection system, the requirements for the size and energy consumption of the detector are becoming more and more stringent. Traditional detector that requires an external power supply can no longer meet these requirements. Moreover, a traditional ultraviolet detector is mainly composed of first-generation semiconductors and second-generation semiconductors. These semiconductors have small band gaps and large cut-off wavelengths, and are more suitable for infrared detection. When used for implementing the ultraviolet detection, an additional layer is often required, which increases not only the volume but also the cost. </sec><sec> Gallium nitride (GaN), as a third-generation semiconductor, has a band gap of 3.4 eV and a corresponding absorption edge of 365 nm. It is a natural ultraviolet detection material. At the same time, the excellent physical and chemical properties make the devices prepared by GaN have high stability. In recent years, some studies have shown that the GaN-based ultraviolet photodetectors have excellent responsiveness, but each of these detectors usually requires an external bias and has a slow response speed. Here, we propose a high responsivity, fast response speed and self-powered ultraviolet photodetector based on NiO/GaN p-n junction. By using the magnetron sputtering, a layer of 70 nm thick p-NiO film is deposited on a high-quality n-GaN film that has been grown on a sapphire substrate by the metal-organic chemical vapor deposition. The fabricated p-n junction shows obvious rectification characteristics at ± 0.5 V. Due to the existence of the built-in electric field, the device can work without externally applied bias. Under zero bias, the detector shows a responsivity of 272.3 mA/W for 365 nm ultraviolet light while the intensity is 50 μW/cm<sup>2</sup>, and has a detectivity as high as 2.83 × 10<sup>14</sup> Jones. This indicates that the detector has a high sensitivity even for very weak light. Owing to the good crystallinity of the film, the dark current is as low as 10<sup>–10</sup> A, the switching ratio is > 10<sup>3</sup>, and the response speed reaches 31 ms. These excellent properties show the broad application prospects of the devices based on NiO/GaN p-n junctions in the field of self-powered ultraviolet detection, and thus providing new ideas for the future development of intelligent integration. </sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3