Preparation and mode conversion application of narrowband hollow-core anti-resonant fiber

Author:

Yang Jia-Hao,Zhang Ao-Yan,Xia Chang-Ming,Deng Zhi-Peng,Liu Jian-Tao,Huang Zhuo-Yuan,Kang Jia-Jian,Zeng Hao-Ran,Jiang Ren-Jie,Mo Zhi-Feng,Hou Zhi-Yun,Zhou Gui-Yao,

Abstract

Owing to the unique characteristics of the hollow core fiber(HCF), more and more researchers pay attention to its application. Because the mode field is mainly limited to the core region of the fiber, which results in low non-linearity, ultra-low group velocity dispersion, low temperature sensitivity, and high material damage threshold. Based on the above, the HCF possesses some attractive nonlinear applications such as in transmission of high-power laser beams, sensing, ultra-wide band low-loss transmission, pulse compression and super-continuum generation. Besides, the HCFs can be further divided into the transmitting band-gap photonic crystal fiber(PBG-PCF) and the hollow-core anti-resonant fiber(HC-ARF). Compared with the PBG-PCF, the latter has wide light guiding characteristics caused by leaking modes. According to the research in the recent year, the HC-ARF has gradually approached to the performance of the PBG-PCF in its transmission loss, showing that it has potential applications in communications, sensing, aerospace, high-power laser transmission and other fields in the future. In addition, the HC-ARF with the special light-guiding properties has also become the important photonic device in the fields of fiber filters, mode conversion, etc. In this paper, a hollow-core anti-resonance fiber is studied and its light transmission performance in the spectral range of 500–1500 nm is verified. The optical loss measured at 980 nm wavelength is about 0.32 dB/m. It is found that a 980 nm multi-mode laser beam can be converted into a single-mode one after transmitting through the hollow core fiber we designed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference30 articles.

1. Zenteno L A, Minelly J D, Dejneka M, Crigler S 2000 Adv. Solid State Lasers, Proc. 34 440

2. Rser F, Jauregui C, Limpert J, Tünnermann A 2008 Opt. Express 16 22

3. Li P X, Zou S Z, Zhang X X, Bai Z A, Li G 2010 Opt. Laser Technol. 42 8

4. Li P X, Zhang X X, Liu Z, Chi J J 2011 International Symposium on Photoelectronic Detection and Imaging 2011-Laser Sensing and Imaging and Biological and Medical Applications of Photonics Sensing and Imaging Beijing, Peoples R China, May 24–26, 2011 p81921W

5. Leich M, Jaeger M, Jager M, Grimm S, Hoh D, Jetschke S, Becker M, Hartung A, Bartelt H 2014 Laser Phys. Lett. 11 4

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3