Design and fabrication of off-axis meta-lens with large focal depth

Author:

Ding Ji-Fei,Liu Wen-Bing,Li Han-Hui,Luo Yi,Xie Chen-Kai,Huang Li-Rong, ,

Abstract

<sec>A kind of off-axis meta-lens with large focal depth based on a single-layer metasurface is designed and fabricated. Our proposed off-axis focus is realized by combining the two functions of deflection and focus through phase superposition method, and the focal depth can be increased by optimizing the input aperture and off-axis deflection angle. Three-dimensional finite difference time domain (FDTD) method is used for numerical simulation to construct the off-axis meta-lens, then the off-axis meta-lens is fabricated and its focus performance is tested in a microwave anechoic chamber.</sec><sec>Experimental results indicate that at the designed electromagnetic wave frequency (9 GHz), the measured off-axis deflection angle is 27.5° and the focal length is 335.4 mm, which agree with the designed values of 30° and 350 mm. The measured full-wave half-maximum (FWHM) at the focal point is 48.2 mm, however, the simulated FWHM is 40.2 mm, which means that the imaging quality of the measured focus spot is slightly worse than the simulated one. This is mainly due to the fact that the actual parameters of the fabricated meta-lens are inconsistent with simulated parameters. In addition, during the measurement, the large sampling interval in the x- direction also leads to experimental errors.</sec><sec>The focusing efficiency of the off-axis meta-lens at the working frequency of 9 GHz is calculated to be 16.9%. The main reason for the low focusing efficiency is that the plasmonic metasurface works in the transmission mode, which can manipulate only the cross-polarized component of the incident wave, and the maximum efficiency will not exceed 25%. Moreover, the focal depths at 8 GHz, 9 GHz and 10 GHz are 263.2 mm, 278.5 mm and 298.2 mm, respectively, which are 7.02 times, 8.36 times and 9.98 times the corresponding wavelengths, indicating that a larger focal depth off-focus meta-lens is achieved. </sec><sec>This kind of off-axis meta-lens has a simple structure, good off-axis focus ability and large focal depth, which has potential applications in a compact and planar off-axis optical system and large focal depth imaging system. Although the working waveband in this article is the microwave band, according to the size scaling effect of the metasurface, it is also possible to design a large focal depth off-axis meta-lens in other bands such as visible light and terahertz bands by using the same method.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3