Experimental research on loading strontium bosons into the optical lattice operating at the “magic” wavelength

Author:

Tian Xiao ,Wang Ye-Bing ,Lu Ben-Quan ,Liu Hui ,Xu Qin-Fang ,Ren Jie ,Yin Mo-Juan ,Kong De-Huan ,Chang Hong ,Zhang Shou-Gang , ,

Abstract

The optical lattice clock with neutral atoms occupies an outstanding position in the research field of atomic clocks, demonstrating the great potential of its performance (like the uncertainty and the stability). At present, the optical lattice clock has realized a 10-18 level of its uncertainty. In this paper, we present the realization of loading bosonic atoms 88Sr (strontium, alkaline-earth metals) into a one-dimensional (1D) optical lattice in our laboratory. The optical lattice where the atoms are trapped can make the energy level shift, called Stark shift. But there is the special optical lattice operating at the “magic” wavelength for clock transitions (5s2) 1S0-(5s5p) 3P0, which can make the same Stark light-shift for both of them, indicating a zero light-shift relative to the clock. In our experiment, Sr atoms are cooled in a two-stage cooling and its temperature can be as low as 2 μK. Then these cold atoms are confined in the Lamb-Dicke region by the lattice laser output from an amplified diode laser operating at the “magic” wavelength, 813 nm. Experimentally, it is straightforward to provide 850 mW of lattice power focused to a 38 μm beam radius. After the cold atoms have trapped in the optical lattice, the lifetime of atoms in 1D optical lattice is measured to be 270 ms. The temperature and the number are about 3.5 μK and 1.2×105 respectively. Besides, effects of the power of the lattice laser on both the number and temperature are analyzed. The number changes linearly with the laser power, while there is no obvious influence on the temperature by the power. This original and special approach for atoms trapped in the optical lattice can provide a long interrogation time for probing the clock transition. Furthermore, it may be the foundation for developing our optical lattice clock of strontium atoms.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference25 articles.

1. Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

2. Madej A A, DubéP, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002

3. Margolis H S, Godun R M, Gill P, Johnson L A M, Shemar S L, Whibberley P B, Denker H, Timmen L, Voigt C, Calonico D, Levi F, Lorini L, Pizzocaro M, Falke S, Piester D, Lisdat C, Sterr U, Vogt S, Weyers S, Delva P, Bize S, Achkar J, Gersl J, Lindvall T, Merimaa M 2013 Joint UFFC, EFTF and PFM Symposium, Prague, Czech Republic, July 21-25, 2013 p908

4. Targat R L, Lorini L, Coq Y L, Zawada M, Guena J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nature Communications 4 2109

5. Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenb T 2010 Phys. Rev. Lett. 104 70802

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3